CHARLES WILLIAMS STREAM, WETLAND, AND BUFFER SITE EEP Project No. 80

MONITORING YEAR 2 (2014)

Construction Completed February 2013
Planting Completed February 2014

Randolph County, NC State Construction Project No. 07-07125-01A

Prepared for the NC Department of Environment and Natural Resources Ecosystem Enhancement Program

1652 Mail Service Center Raleigh, NC 27699-1652

FINAL REPORT December 2014

Prepared by:

1151 SE Cary Parkway, Suite 101 Cary, NC 27518 919.557.0929 www.ecologicaleng.com

David G. Cooper, Project Scientist

Davidlo-Cooper

Under Contract With:

TABLE O	OF CONTENTS	
		<u>Page</u>
1.0 EXE	CUTIVE SUMMARY/PROJECT ABSTRACT	1
	1.1 Goals and Objectives	1
	1.2 Background Summary	1
	1.3 Vegetation Condition and Comparison to Success Criteria	2
	1.4 Stream Stability/Condition and Comparison to Success Criteria	3
	1.5 Wetland Condition and Performance Relative to Success Criteria	3
	1.6 Other Information	3
2.0 ME	THODOLOGY	4
3.0 REF	ERENCES	5
APPENI	DIX A. Project Vicinity Map and Background Tables	
	Figure 1. Vicinity Map	
-	Table 1. Project Components and Mitigation Credits	
-	Table 2. Project Activity and Reporting History	
-	Table 3. Project Contact Table	
•	Table 4. Project Baseline Information and Attributes	
APPENI	DIX B. Visual Assessment Data	
	Figure 2. Mitigation Components	
	Figure 3. Current Condition Plan View (CCPV)	
-	Table 5. Visual Stream Morphology Stability Assessment Table	
-	Table 6. Vegetation Condition Assessment Table	
I	Photograph Comparisons	
APPENE	DIX C. Vegetation Plot Data	
	Planted Vegetation Summary	
	Proposed Supplemental Planting Letter	
	Original Planting List from EEP	
	Table 7. Vegetation Plot Mitigation Success Summary Table	
	Table 8. CVS Vegetation Metadata Table	
	Table 9. CVS Stem Count Total and Planted by Plot and Species	
APPENI	DIX D. Stream Survey Data	
	Cross Section Plot Exhibits	
	Longitudinal Profile Plot Exhibit	

Cross Section Pebble Count Exhibits Table 10. Baseline Stream Data Summary Table 11. Monitoring Data

APPENDIX E. Hydrology Data Table 12. Verification of Bankfull Events 2013-2014 Precipitation Data Chart

APPENDIX F. EEP Comments and Response to Comments – Draft MY 2 Report

Response to EEP Comments dated December 17, 2014

1.0 EXECUTIVE SUMMARY/ PROJECT ABSTRACT

The Charles Williams Stream, Wetland and Buffer Site, hereinafter referred to as the "Project Site" or "Site," is located in Randolph County, North Carolina, within US Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC) 03030003 and NC Division of Water Resources (NCDWR) sub-basin 03-06-09 of the Cape Fear River Basin (Figure 1). The project involved the enhancement of 1,850 linear feet of an unnamed tributary (UT) to Sandy Creek, 2.2 acres of wetlands and 8.8 acres of riparian buffer. The Site is protected for perpetuity under a conservation easement purchased from Mr. Charles Williams in 2006. Project restoration components, activity and reporting history, contacts and attribute data are all provided in Appendix A.

1.1 Goals and Objectives

The Project's goals were to:

- reduce nutrient and sediment water quality stressors;
- provide for uplift in water quality functions;
- improve instream and wetland aquatic habitats, including riparian terrestrial habitats; and,
- provide for greater overall instream and wetland habitat complexity and quality.

Stream enhancement, the primary component, served as the dominant input for achieving this goal.

No restoration goals were identified in the Cape Fear River Basinwide Management Plan (NCDWQ, 2005) with regard to the Sandy Creek watershed. There were no sources or stressors listed for the watershed area associated with the Project Site. The NC Department of Environment and Natural Resources (NCDENR) Ecosystem Enhancement Program (EEP) develops River Basin Restoration Priorities (RBRP) to guide its restoration activities within each of the state's 54 cataloging units. RBRPs delineate specific watersheds that exhibit both the need and opportunity for wetland, stream and riparian buffer restoration. These watersheds are called Targeted Local Watersheds (TLWs) and receive priority for EEP planning and restoration project funds. The 2009 Draft Cape Fear River RBRP identified HUC 03030003020010, which includes the Project Site, as a Targeted Local Watershed. The following information is taken directly from the RBRP. "...This is a largely rural hydrologic unit (HU). The main stream, Sandy Creek, flows through Randolph County to Sandy Creek Reservoir, a drinking water supply for Ramseur and Franklinville. As of 2006, the HU had no streams on DWQ's list of impaired waters; however, the reservoir shows indications of high nutrient levels, likely related to the large number of animal operations in the HU. The HU is a Water Supply Watershed and a long portion of Sandy Creek is recognized by the State's Natural Heritage Program as a Significant Natural Heritage Area. EEP has been active in the HU with five projects that include components of preserving wetlands (3 acres) and streams (5,100 linear feet) and restoring wetlands (15 acres) and streams (15,000 linear feet). Piedmont Land Conservancy has also been active in protecting streamside buffers in the HU. Continued implementation of practices to reduce nutrient inputs to Sandy Creek Reservoir is recommended for this HU."

1.2 Background Summary

The Project Site is situated in northeastern Randolph County, approximately four miles west of Liberty and six miles north of Ramseur (Figure 1). It is bordered to the north and west by undeveloped land, to the east by SR 2442 (Ramseur-Julian Road), and to the south by Sandy Creek. Northeastern Randolph Middle School is on the property opposite of Sandy Creek, to the south. The Project Site can be accessed by using the following directions from US Highway 64.

- Turn north on US 421 in Siler City, towards the Town of Liberty.
- Proceed approximately 9.5 miles and turn south (left) onto NC 49.
- Proceed approximately 0.7 miles along NC 49 and turn north (right) onto SR 2459 (Sandy Creek Church Road).
- Follow Sandy Creek Church Road approximately 4.5 miles until it intersects with Ramseur-Julian Road and turn north (right),
- Follow Ramseur-Julian Road approximately 0.3 miles, crossing over Sandy Creek. The Charles Williams Site is on the west (left) side of the roadway, immediately north of Sandy Creek.

Situated in the Piedmont physiographic province and the Cape Fear River Basin, the Project Site encompasses 18 acres of former pasture and existing riparian forest. Elevations across the Site range between approximately 550 and 560 feet above Mean Sea Level. The following chart depicts pre-implementation existing condition information regarding the Site.

	Pre-implementation E	xisting Conditions Summary
æ	Piedmont	County

Physiographic Province	Piedmont	County	Randolph
River Basin Name	Cape Fear	Property Owner Name	Charles Williams
USGS 8-digit HUC	03030003		
USGS 14-digit HUC	03030002020010	Stream #1 Name	UT to Sandy Creek
NCDWQ Subbasin	03-06-09	Drainage Area	4.9 sq. mi.
Underlying Mapped Soil(s)	Chewacla loam	NCDWQ Score	(Perennial)
Drainage Class	Somewhat poorly drained	Rosgen Classification	C5
Hydric Status	В		
Slope	0-2 %		
Available Water Capacity	Moderate to High		
FEMA Classification	Zone AE		
Invasive Vegetation Observed	Multiflora rose (Rosa multifl	ora)	_
	Chinese privet (Ligustrum sin	nense)	

1.3 **Vegetation Condition and Comparison to Success Criteria**

Vegetation success criteria are consistent with the US Army Corps of Engineers (USACE) Wilmington Regulatory District's guidance for stream and wetland mitigation and the NCDENR's guidance for riparian buffer credit. The USACE guidance requires the survival of a minimum of 320 planted woody stems/acre after Monitoring Year 3 (MY3). A mortality rate of 10% is allowed after MY4 assessments (288 stems/acre) and, correspondingly, after MY5 assessments (260 stems/acre). The NCDENR guidance requires survival of at least 320 native, planted, hardwood stems/acre (trees only) the end of the MY 5 to successfully earn riparian buffer credit.

Vegetation is currently being assessed using plot layouts consistent with the EEP/Carolina Vegetation Survey (CVS) Level II Vegetation Protocol. Stem count data is ascertained from 12 permanently placed 10-meter² vegetation plots (Figures 3a and 3b). Assessments include counts of both planted and natural stems. Due to the timing of MY1 vegetation surveys, planted hardwood species that were unknown due to age, lack of bark formation, wildlife browsing of buds, etc. were included in the MY1 stem counts. These species were identified during MY2 monitoring. Based on the current monitoring effort, two of eight vegetation plots met the minimum success criteria established for MY3 stream/wetland mitigation criteria and two of twelve plots met the criteria for riparian buffer credit. Supplemental planting is planned for the 2014-2015 planting season. Appendices B and C depict more detailed information regarding the vegetation condition, including annual photograph comparisons and additional information regarding the proposed supplemental planting. Appendix F also contains additional information regarding vegetation monitoring and performance.

Due to the random placement of vegetation plots, only one of the eight plots associated with stream/wetland credit is currently placed within the wetland enhancement area (Vegetation Plot #6). The remaining seven plots are situated in non-wetland areas; however, based on current site conditions, three plots (Vegetation Plots #3, #7, and #8) may likely be in wetland areas by MY4 assessments. The locations of the current plots will be reassessed during MY4 activities.

1.4 Stream Stability/Condition and Comparison to Success Criteria

Enhancement (Level I) of the UT utilized natural channel design methodologies consistent with Priority Level IV stream restoration protocols. These protocols specifically include the stabilization of the existing channel in place. To document successful stabilization, a minimum of two bankfull events must be documented within the standard five-year monitoring period. In order for the hydrology-based monitoring to be considered complete, the two events must occur in separate monitoring years.

A bankfull event was recorded during September 2014. Evidence of this event consisted of wrack material above the bankfull indicators along the channel and cork shavings within the crest gauge present at approximately 38 inches. Annual photograph comparisons of the stream channel are depicted in Appendix B and hydrologic data associated with this year's monitoring assessment are provided in Appendix E.

1.5 Wetland Condition and Performance Relative to Success Criteria

Wetland enhancement work was performed throughout the existing wetland areas. Prior to enhancement, these wetlands were severely degraded as a result of continuous soil compaction and grazing from livestock. The enhancement work included livestock removal via exclusion fencing and supplemental plantings. Benefits of the enhancement include water quality improvement by trapping nutrients such as nitrogen and phosphorous, toxic substances and disease-causing microorganisms. Wetlands also slow and intercept surface runoff, protect stream banks from erosion, protect upland areas from flooding, and provide valuable habitat for wildlife.

1.6 Other Information

Summary information/data related to the occurrence of items such as beaver dams or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

Boundary marking along the conservation easement using signage consistent with EEP guidelines was performed by Ecological Engineering on December 8, 2014. A report detailing the boundary marking effort is in preparation to EEP. Boundary marking will be reviewed and amended as needed based on EEP comment, and additional information will be provided in the MY3 (2015) report.

During MY2 monitoring, a recently constructed beaver dam was observed within the channel. The location of this dam is shown in Figure 3a.

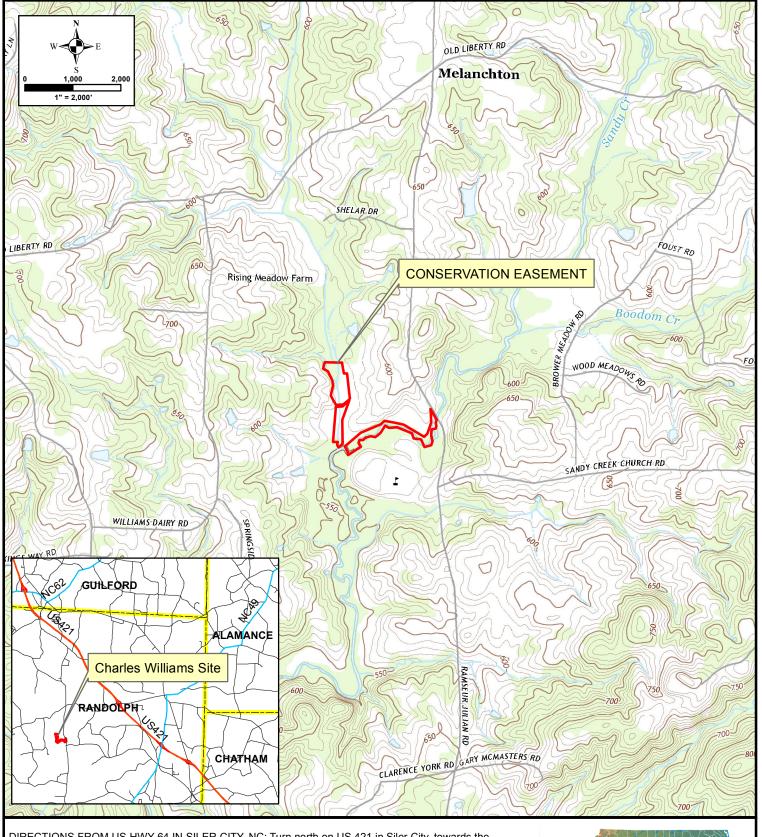
2.0 METHODOLOGY

This monitoring report follows methodology consistent with EEP's Procedural Guidance and Content Requirements for EEP Monitoring Reports (Version 1.4, dated 11/07/11), available at EEP's website (http://www.nceep.net).

All surveys were performed via total station and survey grade Global Positioning System (GPS). Each survey point has three-dimensional coordinates and is tied to survey control points. Longitudinal profile stationing was developed based on the design stationing, and follows the UT from the northern to the southern property boundary (upstream to downstream) as depicted on the survey plat. Based on comments from EEP during the review of the draft MY2 monitoring report, future surveys of longitudinal profile data will incorporate more detailed data collection than has been shown to date. Please refer to Appendix F for additional information regarding survey methodology for future monitoring years.

Particle size distribution protocols followed the Wolman Pebble Count Procedure, which requires an observer with a metric ruler to measure particles based on their intermediate axis. This information is correlated into a graph depicting a particle size analysis of the cross section.

Vegetation assessments were conducted using the CVS-EEP protocol (Version 4.2). As part of this protocol, vegetation is assessed using 100-meter² plots, or modules. The scientific method requires that measurements be as unbiased as possible, and that they be repeatable. Plots are designed to achieve both of these objectives; in particular, different people should be able to inventory the same plot and produce similar data (Lee et. al., 2006). According to Lee et. al. (2006), there are many different goals in recording vegetation, and both time and resources for collecting plot data are extremely variable. To provide appropriate flexibility in project design, the CVS-EEP protocol supports five distinct types of vegetation plot records, which are referred to as levels in recognition of the increasing level of detail and complexity across the sequence. The lower levels require less detail and fewer types of information about both vegetation and environment, and thus are generally sampled with less time and effort (Lee et. al., 2006). Level 1 (Planted Stem Inventory Plots) and Level 2 (Total Woody Stem Inventory Plots) inventories were completed on all 12 of the vegetation plots at the Project Site.


A crest gauge was installed near the downstream end of the Site along the UT to verify the on-site occurrences of bankfull events. In addition to the crest gauge, observations of recently deposited overbank wrack and/or sediment serve to validate gauge observations, as necessary. Documentation of the highest stage during the monitoring interval is assessed during each Site visit and the gauge is reset. The data related to bankfull verification are summarized in each year's report. Based on the elevation of the crest gauge, any readings observed higher than 22 inches on the gauge reflect a bankfull or above bankfull event.

3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts and T.R. Wentworth, 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm).
- NCDENR Division of Water Quality (NCDWQ), 2005. Cape Fear River Basinwide Management Plan. Available at: http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear.
- NCDENR Ecosystem Enhancement Program, 2013. Charles Williams Stream, Wetland, and Buffer Site Baseline Monitoring Document and As-built Baseline Report. Prepared by Ecological Engineering, LLP.
- NC State Climate Office, 2014. Daily Precipitation Data from Siler City Airport (SILR), Chatham County (www.nc-climate.ncsu.edu).
- US Army Corps of Engineers, US Environmental Protection Agency, NC Wildlife Resources Commission and NC Department of Environment Division of Water Quality, 2003. Stream Mitigation Guidelines.

APPENDIX A

Project Vicinity Map and Background Tables

DIRECTIONS FROM US HWY 64 IN SILER CITY, NC: Turn north on US 421 in Siler City, towards the Town of Liberty. Proceed approximately 9.5 miles, then turn left onto NC 49. Proceed approximately 0.7 miles, then turn right onto SR 2459 (Sandy Creek Church Road). Proceed approximately 4.5 miles, then turn right onto SR 2442 (Ramseur-Julian Road). Proceed approximately 0.3 miles, crossing over Sandy Creek. The Charles Williams site is on the west (left) side of the roadway, immediately north of Sandy Creek.

PROJECT SITE VICINITY MAP Charles Williams Site -EEP Project No. 80

Randolph Co., NC

November 2014

Map Source:

2013 Grays Chapel and Liberty USGS Quadrangles

FIGURE 1

Table 1. Project Components and Mitigation Credits

Charles Williams Stream. Wetland and Buffer Site / 80

Stream Riparian Wetland Non-riparian wetland Buffer Nutrient Offset Offset Type R RE R RE R RE Totals 1,233 1.1 336,430 Project Components												
				N	litigation Credit	s						
	S	tream	Riparia	an Wetland	Non-riparia	n wetland	Buffer	Nutrient				
Туре	R	RE	R	RE	R	RE						
Totals		1,233		1.1			336,430					
				Pro	oject Componer	nts						
Project Comp	oonent	Stationing/L	ocation			Approach	Restoration	Footage or	Mitigation Ratio			
Stream Enhan	cement	10+00 to 2	27+53	1,850	linear feet	EI	RE	1,233	1.5 : 1			
		of UT to S	andy	2.2	acres	E	RE	1.1	2:1			
	on (TOB			201,481	square feet	R	R	201,481	1:1			
	ion (50' -			119,203	square feet	R	R	119,203	1:1			
	ion (101'			63,704	square feet	R	R	15,926	4:1			
Stream Riparian Wetland Non-riparian wetland Buffer Nutricent Offset Off												
Restoration	Level	Stream (line	ar feet)	Riparian W	etland (acres)			(square				
				Riverine	Non-riverine							
Restoration	on							384,208				
				2.2								
		1,850										
HQ	ion											
					BMP Elements							
Elemen	t	Location	on	Purpos	e/Function		Not	tes				

BMP Elements

BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Dentention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer.

Table 2. Project Activity and Reporting History

Charles Williams Stream Wetland and Buffer Site / 80

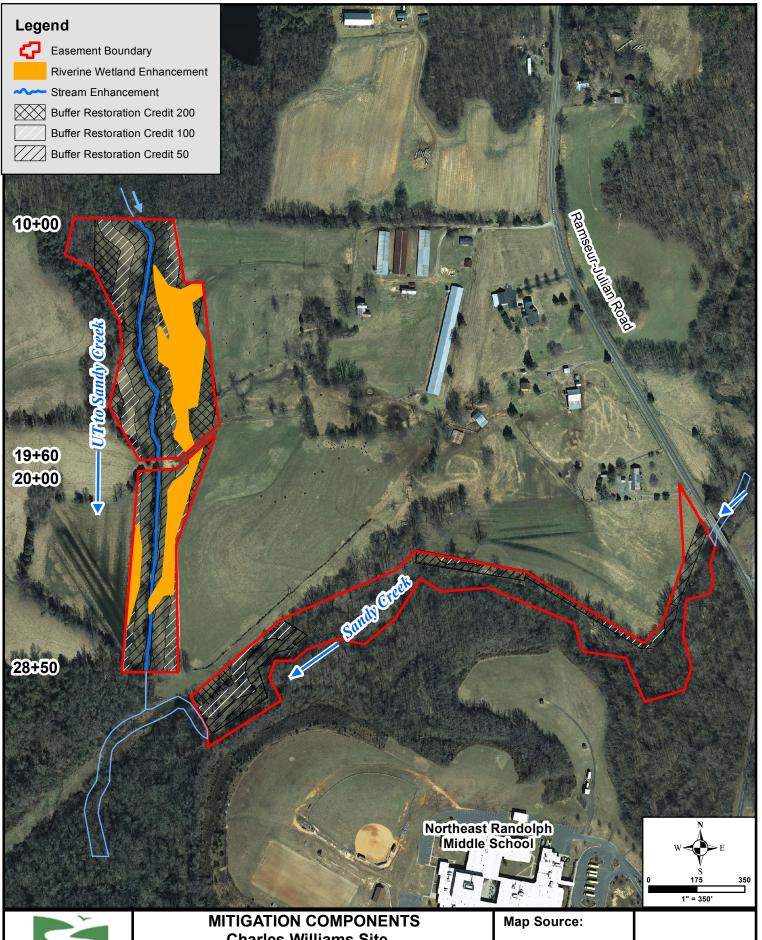
Elapsed Time Since Grading Complete (Feb 2013): 1 year, 9 months

Elapsed Time Since Planting Complete (Feb 2014): 9 months

Number of Reporting Years: 2

Activity or Report	Data Collection Complete	Completion or Delivery
Mitigation Plan	September-08	May-09
Final Design - Construction Plans	November-09	April-12
Construction		February-13
Temporary S&E Mix Applied to Entire Project Area		January -13
Permanent Seed Mix Applied to Entire Project Area		January -13
Live Stake Plantings Applied		January -13
Bare-rooted Planting Applied		February-14
Baseline Monitoring Document	June-13	July-13
Year 1 Monitoring	March-14	May-14
Year 2 Monitoring	September-14	Nov ember-14
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 6 Monitoring (vegetation only)		

Table 3. Project	t Contact Table
Charles Williams Stream V	Vetland and Buffer Site / 80
Designer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
Jenny S. Fleming, PE	(919) 557-0929
Construction Contractor	Firm Information/ Address
Riverworks, Inc.	8000 Regency Parkway, Suite 800, Cary, NC 27518
Bill Wright	(919) 459-9001
Hauling Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
	(336) 697-7005
Planting Contractor(s)	Firm Information/ Address
Carolina Silvics, Inc. (bare-rooted & containerized)	908 Indian Trail Road, Edenton, NC 27932
Mary-Margaret S. McKinney , RF, PWS	(252) 482.8491
Riverworks, Inc. (livestakes only)	8000 Regency Parkway, Suite 800, Cary, NC 27518
George Morris	(919) 459-9001
Seeding Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
Kenneth L. Strader	(336) 697-7005
Seed Mix Sources	Green Resource, LLC (336) 855-6363
Nursery Stock Suppliers (live stakes only)	Native Roots Nursery (910) 385-8385
	NC Forest Service Tree Nursery (919) 731-7988
	Foggy Mountain Nursery (336) 384-5323
	Mellow Marsh Farm (919) 742-1200
Monitoring Performer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
David Cooper, Ed Hajnos, Reid Robol (stream, vegetation & wetland)	(919) 557-0929

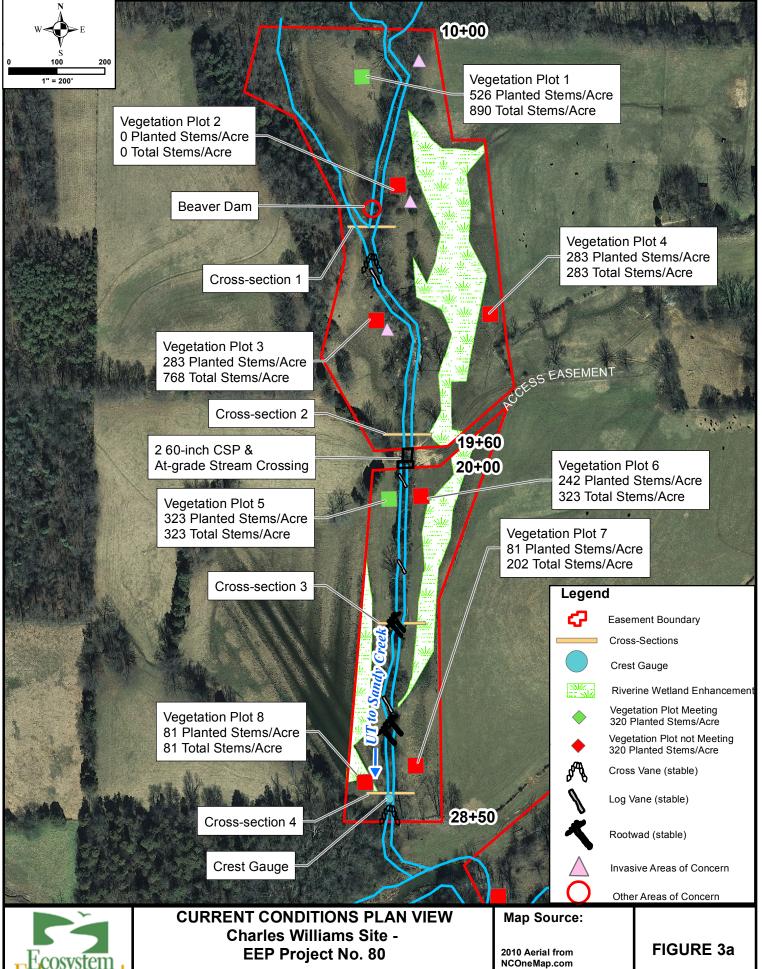

Table 4. Project Baseline Information and Attributes

Charles Williams Stream Wetland and Buffer Site / 80

Charles Williams Strea	im Wetland and Buffer Site / 80
Proje	ect Information
Project Name	Charles Williams Stream Wetland and Buffer Site
County	Randolph
Project Area	18 acres
Project Coordinates (latitude and longitude)	35°49'31.95" North/ 79°39'02.64" West
Project Watersh	ed Summary Information
Physiographic Province	Piedmont
River Basin	Cape Fear
USGS Hydrologic Unit 8-digit 03030003	USGS Hydrologic Unit 14-digit 03030003020010
DWQ Subbasin	03-06-09
Project Drainage Area	4.9 sq. mi.
Project Drainage Area Percentage of Impervious Area	5 to 6%
CGIA Land Use Classification	Agricultural Land
Reach Su	mmary Information
Length of Reach	1,850 linear feet
Valley Classification	Valley Type VIII
Drainage Area	4.9 sq. mi.
NCDWQ Stream ID Score	>50
NCDWQ Water Quality Classification	WS-III
Morphological Description (stream type)	C5
Evolutionary Trend	C-G-F-E-C
Underlying Mapped Soils	C hewacla loam
Drainage Classification	Poorly drained
Soil Hydric Status	Hydric B
Slope	0 to 2%
FEMA Classification	Zone AE
Native Vegetation Community	Piedmont Alluvial Forest
Percent Composition of Exotic Invasive Species	Less than 5%
Wetland So	ummary Information
Size of Wetland	1.96 acres
Wetland Type	Riverine
Mapped Soil Series	C hewacla loam
Drainage Classification	Somewhat poorly drained
Soil Hydric Status	Hydric B
Source of Hydrology	Overbank flooding
Hydrologic Impairment	None
Native Vegetation Community	Piedmont Alluvial Forest
Percent Composition of Exotic Invasive Species	Less than 5%
	ory Considerations
Waters of the United States - Section 404	Resolved
Waters of the United States - Section 401	Resolved
Endangered Species Act	Resolved
Historic Preservation Act	Resolved
Coastal Zone/Area Management Acts (CZMA/CAMA)	Not Applicable
FEMA Floodplain Compliance	Resolved
Essential Fisheries Habitat	Not Applicable
Loochtiai i iolici ico Habitat	ινοι Αμμιισανίθ

APPENDIX B

Visual Assessment Data


Charles Williams Site -EEP Project No. 80

Randolph Co., NC

2010 Aerial from NCOneMap.com

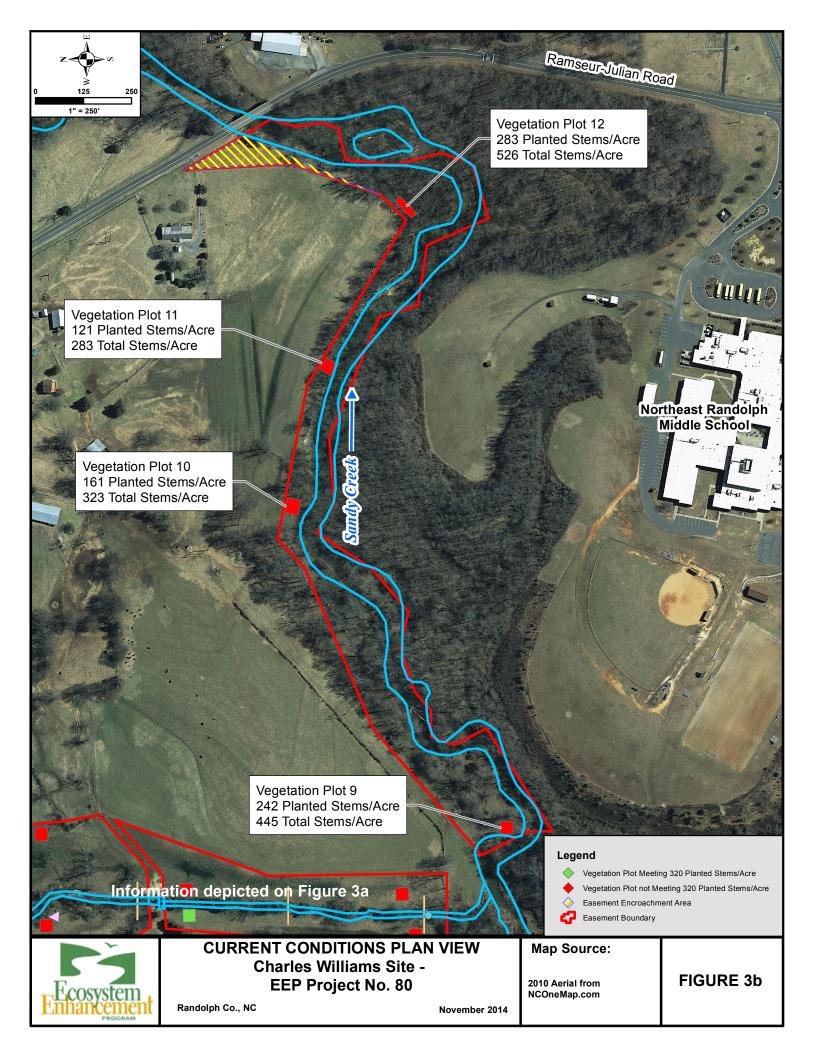
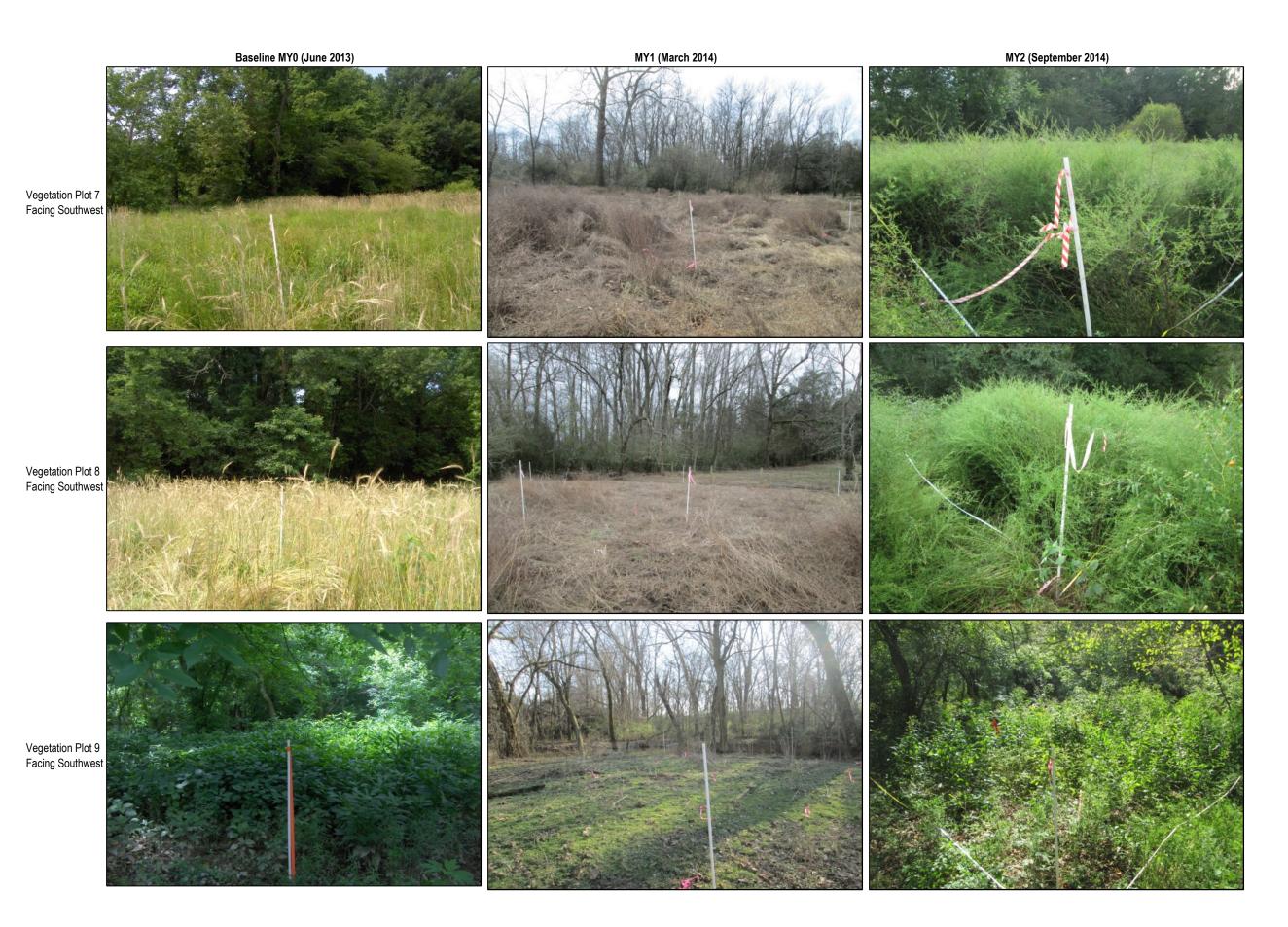

November 2014

FIGURE 2

Randolph Co., NC

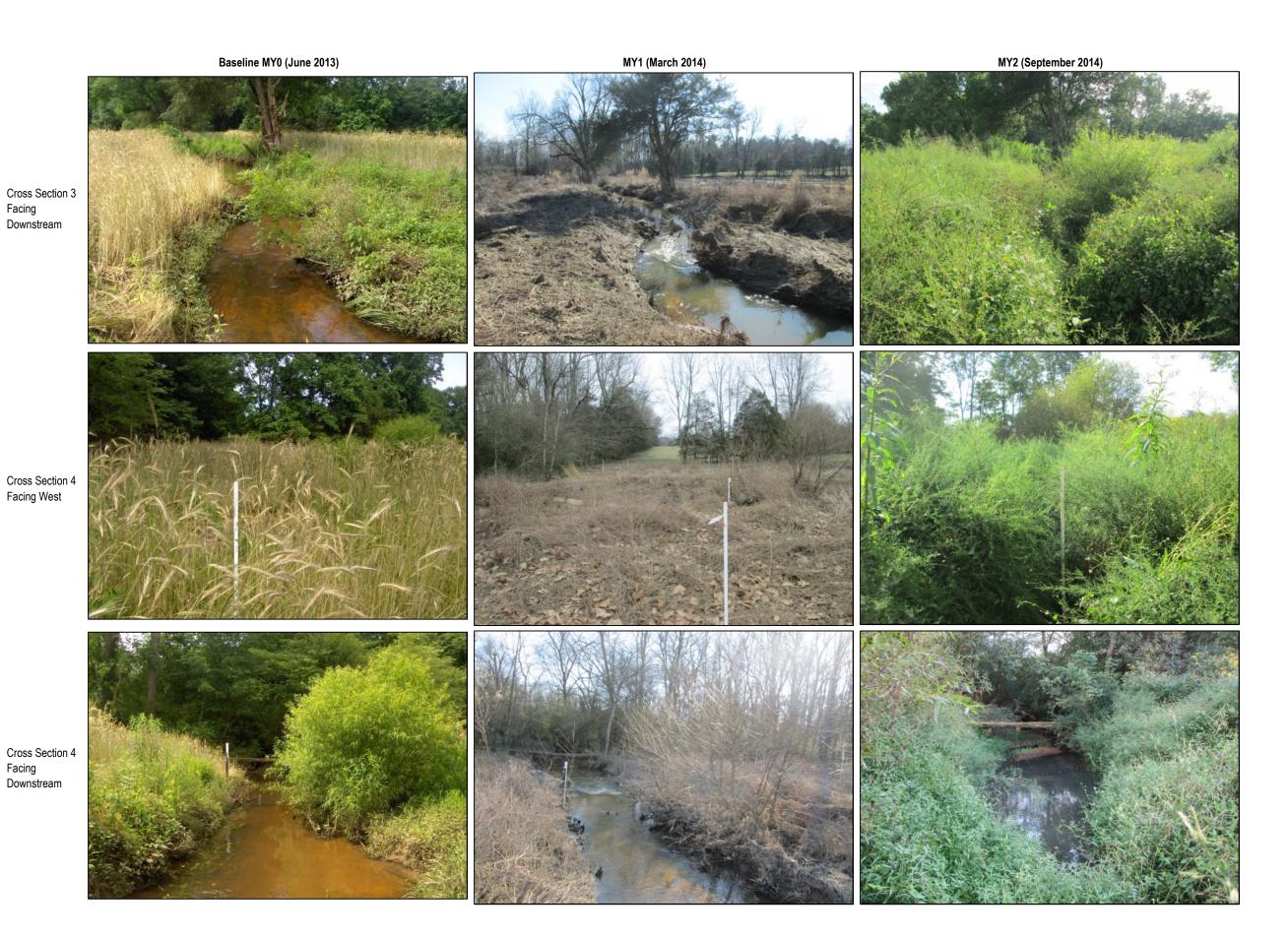
November 2014

		Table 5. Visual Stream Morphology Assessment Assessed Length: 1,850 linear feet Charles Williams Stream, Wetland, and Buffer Site / 80	Morpho gth: 1,850 I n, Wetland,	logy Assinear feet	essmen Site / 80	1				
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars). Degradation - Evidence of down-cutting.			0	0	100			
	Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate.			0	0	100			
Bed	Meander Pool	Depth - Sufficient (Max. Pool Depth: Mean Bankfull Depth ratio > 1.6).	4	5			80			
	Condition	Length - Appropriate (>30% of centerline distance between tail of upstream niffle and head of downstream niffle).	4	5			80			
	Thatwee Position	Thalw eg centering at upstream of meander bend (run).	8	8			100			
		Thalw eg centering at downstream of meander bend (giide).	7	8			80			
	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100	none	none	n/a
Bank	U ndercut	Banks undercut/overhanging to the extent that mass w asting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100	none	none	n/a
	Mass Wasting	Bank slumping, calving, or collapse.			0	0	100	none	euou	n/a
				Totals	0	0	92	n/a	n/a	n/a
	Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			8			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			3			
Engineered Structures	Piping	Structures lacking any substantial flow underneath sills or arms.	∞	_∞			∞			
	Bank Protection	Bank erosion with the structures extent of influence does NOT exceed 15%.	8	8			80			
	Habitat	Pool forming structures maintaining - Max. Pool Depth : Mean Bankfull Depth ratio > 1.6. Rootwads/logs providing some cover at base-flow.	3	3			3			


Table 6. Vegetation Condition Assessment Charles Williams Stream, Wetland, and Buffer Site / 80

	Charles Williams Stream, W	etland, and	Buffer Site	/ 80		
Planted Acreage:	16 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	n/a	n/a	n/a	n/a
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY 3, 4, or 5 stem count criteria.	0.1 acres	See CCPV	10	+/- 0.1 ac.	<1%
			Total	n/a	n/a	n/a
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	n/a	n/a	n/a	n/a
		Cum	ulative Total	n/a	n/a	n/a
Cationated Assesses	40					
Estimated Acreage:	18 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1,000 SF	See CCPV	3	<.1 acres	<1 %
Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	1,000 SF	See CCPV	1	0.3 acres	<1%

Charles Williams Stream, Wetland, and Buffer Site / 80 - Annual Photograph Comparison



Cross Section 1
Facing
Downstream

Cross Section 2 Facing Downstream

Cross Section 3 Facing West

APPENDIX C

Vegetation Plot Data

Planted Vegetation Summary

During MY2 monitoring, competition from dense native herbaceous vegetation was observed, and contributed to low planted woody stem counts in 10 of the 12 Vegetation Plots. Supplemental planting and herbaceous control is proposed between December 2014 and March 2015 to augment planted woody stems. Please refer to the letter and tables below.

Proposed Supplemental Planting Letter

October 6, 2014

Mr. Jeff Schaffer NC Ecosystem Enhancement Program 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

Re: D13002S

Site: Sandy Creek (Charlie Williams), EEP# 80 Randolph County, NC

Dear Mr. Schaffer:

This letter serves as our Site Maintenance Report the above referenced project site and proposes replanting activities at the site.

Messrs. William Skinner and Perry Sugg of Carolina Silvics, Inc. last visited the project site on September 9, 2014. Herbicide applications were performed at this time to control privet (*Ligustrum* spp.) and air yam (*Dioscorea bulbifera*). While on-site they observed many areas of the site where herbaceous vegetation was extremely thick and possibly outcompeting the planted stems. They also observed many dead stems and that the tops of many planted stems appeared to have died-back but were resprouting.

The Fall monitoring data and baseline monitoring data that you have provided shows approximately 65% survival at this site and correlates with what we observed on-site.

Carolina Silvics, Inc. proposes to replant the site between December 15, 2014 and March 15, 2015 with approximately 3,450 stems (an average of 300 stems per acre) from the original planting list for the site. These stems will distributed throughout the site as needed based upon the Fall monitoring report and observed conditions on site. Seedling orders are being finalized now and will be forwarded to you for approval within the next week.

Since survival percentage of stems is less than we would like, we feel that both soil amelioration and competition control measures are needed at this site. Within portions of the site where competition seems particularly heavy, we will manually cut paths several feet wide low to the ground in the existing herbaceous competition and apply Oust® XP (sulfometuron methyl) herbicide to the paths. Herbicide will not be applied to areas of standing water or areas along the channel. Stems

Office: 252-482-8491

Fax: 252-482-8491

Web: www.carolinasilvics.com

will then be replanted into these paths. Conversely, in areas where general vegetative growth is sparse, we will apply a slow release fertilizer at time of planting to improve general soil fertility in those areas.

We will notify you in advance of our replanting and maintenance activities on this site. We request that a member of your staff be onsite with us as we begin these actives so that proper distribution of the seedlings can be agreed-upon in the field by all parties.

Please know that Carolina Silvics, Inc. is committed to the success of this project and will take the measures necessary to ensure that we remain in contract compliance. If you have any questions regarding this report or our proposed replanting and maintenance activities, please contact me at (252) 482-8491 or mary-margaret@carolinasilvics.com.

Respectfully,

CAROLINA SILVICS, INC.

Mary-Margaret McKinney, RF

President

Office: 252-482-8491 *Fax*: 252-482-8491

Web: www.carolinasilvics.com

Original Planting List from EEP

Cassian	T	Ripa	arian	Wet	land	Newsons
Species	Type	Qty	%	Qty	%	Nursery
Betula nigra	2-0 BR	300	10%	100	11%	NCFS
Carya glabra	2-0 BR	100	3%			NCFS
Carya tomentosa	2-0 BR	200	7%			NCFS
Fraxinus pennsylvanica	2-0 BR	275	9%	100	11%	NCFS
Liriodendron tulipifera	2-0 BR	400	13%			NCFS
Platanus occidentalis	2-0 BR	225	7%	200	23%	NCFS
Quercus falcata var. pagodiafolia	2-0 BR	300	10%	100	11%	NCFS
Quercus nigra	2-0 BR			100	11%	NCFS
Quercus phellos	2-0 BR	600	20%	200	23%	NCFS
Quercus rubra	2-0 BR	300	10%			NCFS
Amelanchier arborea	1-gal	25	1%			Native Roots
Carpinus caroliniana	1-gal	85	3%			Native Roots
Chionanthus virginicus	1-gal	64	2%			Native Roots
Diospyros virginiana	2-0 BR	200	7%			NCFS
llex verticillata	1-gal			37	4%	Native Roots
Magnolia virginiana	1-gal			38	4%	Native Roots
		3,074	100%	875	100%	

Т	able 7. Vegetation	Plot Criteria Att	ainment
	Charles Williams Stream	n, Wetland, and Buffe	er Site / 80
Vegetation Plot ID	Stream/Wetland Vegetation Survival Threshold Met?	Buffer Vegetation Survival Threshold Met?	Tract Mean
1	Yes	Yes	
2	No	No	
3	No	No	
4	No	No	
5	Yes	Yes	
6	No	No	Stream/Wetland Veg. = 67%
7	No	No	Buffer Veg. = 100%
8	No	No	
9	n/a	No	
10	n/a	No	
11	n/a	No	
12	n/a	No	

Notes:

Previously unidentified planted woody stems were identified during MY2 vegetation counts.

Supplemental planting at approximately 300 stems per acre is proposed between December 2014 and March 2015.

Table 8. CVS Vegetation Plot Metadata

Charles Williams Stream, Wetland, and Buffer Site / 80

Report Prepared By David Cooper Date Prepared 9/17/2014 12:24

database name SandyCreekCharlesWilliams_80_RandolphCounty_Year 2.mdb

P:\10000 Consultants\10227 Sungate\10227-017 Charles

Williams Monitoring\CVS Database

computer name WKST6 file size 63438848

database location

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT

Description of database file, the report worksheets, and a Metadata

summary of project(s) and project data.

Each project is listed with its PLANTED stems per acre, for each Proj, planted

year. This excludes live stakes.

Each project is listed with its TOTAL stems per acre, for each

year. This includes live stakes, all planted stems, and all Proj, total stems

natural/volunteer stems.

List of plots surveyed with location and summary data (live **Plots**

stems, dead stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots.

Vigor by Spp Frequency distribution of vigor classes listed by species.

List of most frequent damage classes with number of **Damage**

occurrences and percent of total stems impacted by each.

Damage by Spp Damage values tallied by type for each species.

Damage by Plot Damage values tallied by type for each plot.

5 to 12

A matrix of the count of PLANTED living stems of each species Planted Stems by Plot and Spp

for each plot; dead and missing stems are excluded.

A matrix of the count of total living stems of each species

(planted and natural volunteers combined) for each plot; dead

and missing stems are excluded.

PROJECT SUMMARY

ALL Stems by Plot and spp

Project Code

project Name Sandy Creek - Charles Williams Description Stream, Wetland and Buffer

River Basin Cape Fear length(ft) 1,850 stream-to-edge width (ft)

area (sq m) 1,302 **Required Plots (calculated)** 12 **Sampled Plots** 12

Table 9. Planted and Total Stem Counts (Species by Plot with Annual Means)

Charles Williams Stream,	Wetland, and Buffer	Site (80)														Curren	t Plot D	ata (M	Y1 2014)														Annı	ual Mea	ns
			080-01-	0001	080	-01-000)2	080-	01-000	3	080-	01-0004	4	080-01-0	005	080-01-0	006	08	0-01-00	07	080-01-00	80	080-0	01-0009	08	30-01-0	010	080-01-0	011	080	-01-0012		MY1	1 (2014)	ı	MY0 (2014)
Scientific Name	Common Name	Species Type	PnoLS P-all	Т	PnoLS	P-all T		PnoLS P	-all T	.	PnoLS P	-all T	ı	PnoLS P-all	Т	PnoLS P-all	Т	PnoLS	P-all	Т	PnoLS P-all	Т	PnoLS P-	all T	PnoL	P-all	Т	PnoLS P-all	Т	PnoLS I	?-all T	Pr	noLS P-	-all T	Pnol	S P-all T
Acer negundo	boxelder	Tree																							5		3	8	3	3		6			17	
Betula nigra	river birch	Tree						1	1	1				1 1	1																		2	2	2 1	1 11
Carpinus caroliniana	American hornbeam	Tree								4													1	1	1								1	1	5	2 2
Carya	hickory	Tree												2 2	2						2 2	2	1	1	1								5	5	5	4 4
Diospyros virginiana	common persimmon	Tree												1 1	1			1	1	1			2	2	2								4	4	4	1 1
Fraxinus pennsylvanica	green ash	Tree	13 1	.3 19				2	2	2	2	2	2	2 2	2	3	3			3					2	2 2	2 2						24	24	33 3	3 33
Liquidambar styraciflua	sweetgum	Tree		3																									1						4	
Liriodendron tulipifera	tuliptree	Tree																												3	3	3	3	3	3	3 3
Magnolia virginiana	sweetbay	Tree														2	2 2																2	2	2	2 2
Platanus occidentalis	American sycamore	Tree									1	1	1			1	1																2	2	2	
Quercus	oak	Tree									1	1	1										2	2	2 2	2 2	2 2	2 2	2 2	2 3	3	3	10	10 :	10 3	30
Quercus laurifolia	laurel oak	Tree									2	2	2																				2	2	2	
Quercus phellos	willow oak	Tree						4	4	4				2 2	2			1	1	1								1 1	1 1	1	1	1	9	9	9	
Quercus rubra	northern red oak	Tree									1	1	1														1						1	1	2	
Salix nigra	black willow	Tree								8							2																		10	
Unknown		Shrub or Tree																																	2	.7 27
		Stem count	13 1	.3 22	0	0	0	7	7	19	7	7	7	8 8	8	6 (5 8	2	2	5	2 2	2	6	6 1	.1	1 4	1 8	3 3	3 7	7 7	7	13	65	65 1:	.10 11	.3 113 :
		size (ares)	1			1			1			1		1		1			1		1			1		1		1			1			12		12
		size (ACRES)	0.02	2		0.02			0.02			0.02		0.02		0.02			0.02		0.02		0	.02		0.02		0.02			0.02		C	0.30		0.30
		Species count	1	1 2	0	0	0	3	3	5	5	5	5	5 5	5	3	3 4	2	2	3	1 1	1	4	4	5 2	2 2	2 4	2 2	2 4	3	3	4	12	12	15	9 9
	St	tems per ACRE	526.1 526.	.1 890.3	0	0	0	283.3	283.3	768.9	283.3	283.3 2	283.3	323.7 323.7	323.7	242.8 242.8	323.7	80.94	80.94	202.3	80.94 80.94	80.94	242.8 2	42.8 445.	2 161.9	161.9	323.7	121.4 121.4	1 283.3	283.3	283.3 5	26.1 2	19.2 2	219.2	71 381.	1 381.1 50

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

APPENDIX D

Stream Survey Data

Cross Section Plot Exhibits

River Basin:	Cape Fear	Station	Elevation	
Watershed:	UT Sandy Creek, MY-01	0.0	554.5	
XS ID:	XS 1, Riffle, STA. 14+41	8.3	553.5	
Drainage Area (sq mi):	4.9	15.5	552.8	
Date:	9/16/2014	18.8	552.2	
Field Crew:	E. Hajnos, R. Robol	19.9	551.8	
		22.0	550.9	
SUMMARY DATA		25.5	551.5	
Bankfull Elevation:	552.8	28.9	551.4	からないとという。
Bankfull Cross Sectional Area:	22.7	31.1	551.4	
Bankfull Width:	23.9	33.3	551.9	
Flood Prone Area Elevation:	554.7	39.7	552.8	
Flood Prone Width:	66.1	50.9	553.3	
Max. Depth at Bankfull:	1.8	62.1	553.7	
Mean Depth at Bankfull:	6.0	66.1	554.5	Stream Type: C5 Photograph facing downstream @ XS 1
Width/Depth Ratio:	25.2			
Entrenchment Ratio:	2.8			
Bank Height Ratio:	1.0			
UT to Sandy Creek. Cross Section 1	Section 1. Riffle, Station: 14+41	41		
COD	·			
000				
0 L				
t) 557				
ee1)				As-Built 2013
) uo				MY1 2/26/14
/at 554				
[] [67]				MY 2 9/ 16/2014
552				Baseline Bankfull Monitoring Datum
551				CONTRACTOR OF THE PROPERTY OF
				Floodprone Area
- ncc	_ :	_ :	- :	

30 40 Distance (feet)

			***************************************		AND STATE SANGE OF THE SANGE	7 7	The same of the sa
Elevation	553.3	553.5	552.8	551.6	551.5	549.8	0 011
Station	0.0	9.4	16.7	18.9	19.6	21.7	7 00
Cape Fear	UTSandy Creek, MY-01	XS 2, Glide, STA. 19+36	4.9	9/16/2014	E. Hajnos, R. Robol		
River Basin:	Watershed:	XS ID:	Drainage Area (sq mi):	Date:	Field Crew:		A TAG VO AND A

					AND THE SALES OF T	7 1	A TOTAL							Stream Type: C5				
Elevation	553.3	553.5	552.8	551.6	551.5	549.8	550.0	551.5	550.4	549.8	550.1	551.5	552.9	553.1	553.0			
Station	0.0	9.4	16.7	18.9	19.6	21.7	23.4	26.0	29.5	31.4	32.1	33.3	36.2	45.0	54.5			

555.9

φ 3.1 <u>~</u> 10.7

1.0

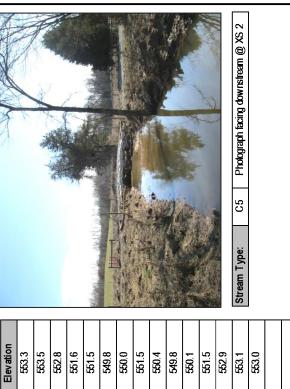
35.3 19.4

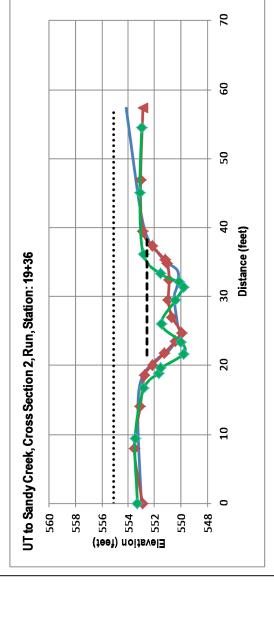
Bankfull Cross Sectional Area:

Bankfull Elevation:

Flood Prone Area Elevation:

Bankfull Width:


Flood Prone Width:


ean Depth at Bankfull: lax. Depth at Bankfull:

Entrenchment Ratio:

Bank Height Ratio:

Width/Depth Ratio:

--- Baseline Bankfull Monitoring Datum

→--- MY 2 9/16/2014

- As-Built 2013 **→** MY1 2/26/14 ····· Floodprone Area

Elevation	551.6	552.0	551.9	6:099	2.645.7	6.843	549.0
Station	0.0	11.2	17.8	20.3	21.7	22.7	24.4
Cape Fear	UT Sandy Creek, MY-01	XS 3, Run, STA. 23+49	4.9	9/16/2014	E. Hajnos, R. Robol		
River Basin:	Watershed:	XS ID:	Drainage Area (sq mi):	Date:	Field Crew:		SUMMARY DATA

	1	A Victoria		10 (10 to 10					作					Photograph fac	
										3				C2	
													に関する。ことの時間に	Stream Type:	
Elevation	551.6	552.0	551.9	550.9	549.7	548.9	549.0	549.2	520.5	551.0	920.6	552.0	552.5	552.0	

		The second secon												Stream Type: C5 Photograph facing			
Elevation	551.6	552.0	551.9	550.9	549.7	548.9	549.0	549.2	550.5	551.0	550.6	552.0	552.5	552.0			
Station	0.0	11.2	17.8	20.3	21.7	22.7	24.4	27.1	29.1	31.3	37.1	40.5	49.0	55.4			

554.9

500 3.0 1.7 12.1 8

33.5 20.1

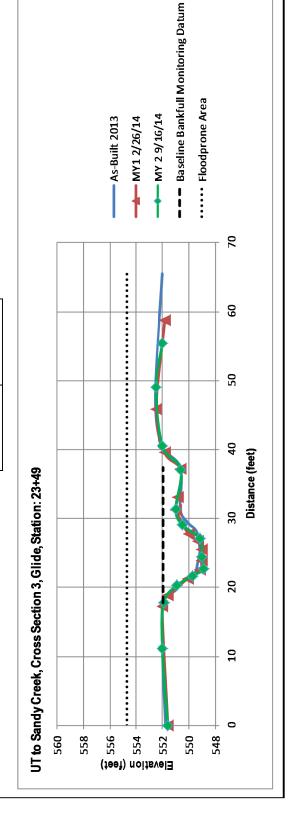
Bankfull Cross Sectional Area:

Bankfull Width:

Bankfull Elevation:

Flood Prone Area Elevation:

Flood Prone Width:


Mean Depth at Bankfull: Max. Depth at Bankfull:

Entrenchment Ratio:

Bank Height Ratio:

Nidth/Depth Ratio:

g downstream @ XS 3

River Basin:	Cape Fear	Station	Elevation	
Watershed:	UT Sandy Creek, MY-01	0.0	551.1	
XS ID:	XS 4, Riffle, STA. 27+14	12.9	551.5	
Drainage Area (sq mi):	4.9	22.3	551.7	
Date:	9/16/2014	25.7	550.8	
Field Crew:	E. Hajnos, R. Robol	27.6	550.1	
		28.1	549.7	
SUMMARY DATA		28.3	548.8	
Bankfull Elevation:	551.7	31.0	549.1	ができる。 は、 がない。 は、 がない。 に、 で、 に、 で、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に
Bankfull Cross Sectional Area:	37.1	33.0	549.1	
Bankfull Width:	24.1	36.2	549.7	
Flood Prone Area Elevation:	554.6	40.7	550.4	
Flood Prone Width:	200+	46.4	551.7	
Max. Depth at Bankfull:	2.9	54.1	552.0	
Mean Depth at Bankfull:	1.5	62.9	552.1	Stream Type: C5 Photograph facing downstream @ XS 4
Width/Depth Ratio:	15.6			
Entrenchment Ratio:	>8.0			
Bank Height Ratio:	1.0			
UT to Sandy Creek, Cross Section 4	Section 4, Riffle, Station: 27+14	14		
095			-	
258				
(teet) 556				——————————————————————————————————————
				MY1 2/26/14
evati 552				₩ 2 9/16/14
<u>m</u> 550				Backling Dankfull Manifording Datum
548				Paseine bankiui Monioring Datum
2 7 2				••••• Floodprone Area
0 10	20 30	40	20 60	70

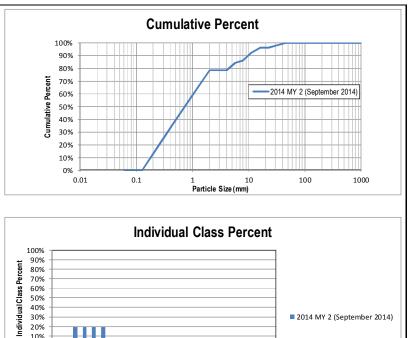
30 40 **Distance (feet)**

Cross Vane 2 ▲ MY 2 Bankfull
MY 2 Water Surface
Thalweg MY 2 9/16/14 Station (ft) MY1 Bankfull
MY1 Water Surface
Thalweg MY1 2/26/14
MY 2 Top of Bank Stream Crossing Cross Vane 1 Elevation (ft)

Profile Reach (UT Sandy Creek Sta. 10+00 to 17+53)

Cross Section Pebble Count Exhibits

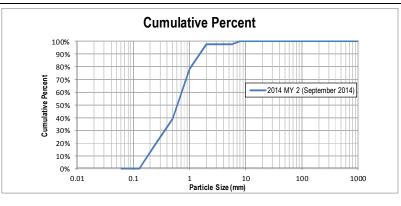
	Charles William	s Stream, Wet Cross Sect Feature: F	ion: 1	fer Site / 80	
		Feature: F		Y 2 (Septemb	er 2014)
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	0	0%	0%
	very fine sand	0.125	0	0%	0%
	fine sand	0.25	10	20%	20%
Sand	medium sand	0.5	10	20%	39%
	coarse sand	1.0	10	20%	59%
	very coarse sand	2.0	10	20%	78%
	very fine gravel	4.0	0	0%	78%
	fine grav el	5.7	3	6%	84%
	fine grav el	8.0	1	2%	86%
	medium gravel	11.3	3	6%	92%
Grav el	medium gravel	16.0	2	4%	96%
	coarse gravel	22.3	0	0%	96%
	coarse gravel	32	1	2%	98%
	very coarse gravel	45	1	2%	100%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
Coppie	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Dould	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
	TOTAL % of	whole count	51	100%	

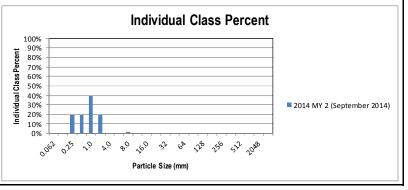

60% 50% 40% 30%

20% 10%

Ф,

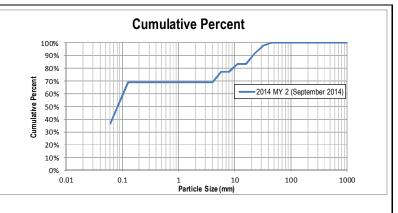
Particle Size (mm)

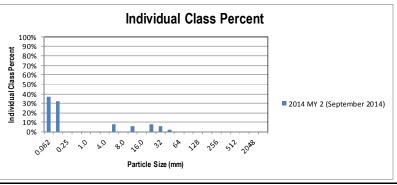

Sum	mary Data
D50	0.70 mm
D84	5.7 mm
D95	16 mm


■ 2014 MY 2 (September 2014)

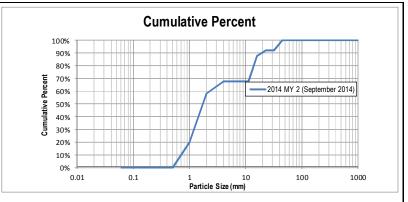
	Charles William	s Stream, Wetl Cross Secti		er Site / 80	
		Feature: G			
		r eature. C		Y 2 (Septemb	er 2014)
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/C lay	silt/clay	0.062	0	0%	0%
	very fine sand	0.125	0	0%	0%
	fine sand	0.25	10	20%	20%
Sand	medium sand	0.5	10	20%	39%
	coarse sand	1.0	20	39%	78%
	very coarse sand	2.0	10	20%	98%
	very fine gravel	4.0	0	0%	98%
	fine grav el	5.7	0	0%	98%
	fine grav el	8.0	1	2%	100%
Grav el	medium gravel	11.3	0	0%	100%
	medium gravel	16.0	0	0%	100%
	coarse gravel	22.3	0	0%	100%
	coarse gravel	32	0	0%	100%
	very coarse gravel	45	0	0%	100%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
CODDIG	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Douluel	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
	TOTAL % of	whole count	51	100%	

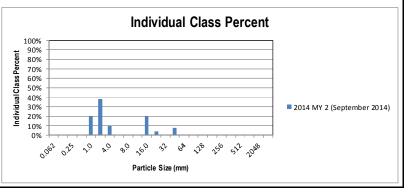
Sum	mary Data
D50	0.60 mm
D84	1.40 mm
D95	1.8 mm




760 35 64 758 526 825 JOBS

	Charles William	s Stream, Wetl Cross Secti		fer Site / 80	
		Feature: F	Run		
			2014 M	IY 2 (Septemb	er 2014)
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/C lay	silt/clay	0.062	18	37%	37%
	very fine sand	0.125	16	33%	69%
	fine sand	0.25	0	0%	69%
Sand	medium sand	0.5	0	0%	69%
	coarse sand	1.0	0	0%	69%
	very coarse sand	2.0	0	0%	69%
	very fine gravel	4.0	0	0%	69%
	fine grav el	5.7	4	8%	78%
	fine grav el	8.0	0	0%	78%
	medium gravel	11.3	3	6%	84%
Grav el	medium gravel	16.0	0	0%	84%
	coarse gravel	22.3	4	8%	92%
	coarse gravel	32	3	6%	98%
	very coarse gravel	45	1	2%	100%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
Conne	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
	TOTAL % of	f whole count	49	100%	


Sum	mary Data
D50	0.07 mm
D84	11.3 mm
D95	30 mm



	Charles William	s Stream, Wet	land, and Bufl	er Site / 80	
		Cross Sect	ion: 4		
		Riffle			
				Y 2 (Septemb	
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	0	0%	0%
	very fine sand	0.125	0	0%	0%
	fine sand	0.25	0	0%	0%
Sand	medium sand	0.5	0	0%	0%
	coarse sand	1.0	10	20%	20%
	very coarse sand	2.0	19	38%	58%
	very fine gravel	4.0	5	10%	68%
	fine grav el	5.7	0	0%	68%
	fine grav el	8.0	0	0%	68%
	medium gravel	11.3	0	0%	68%
Grav el	medium gravel	16.0	10	20%	88%
	coarse gravel	22.3	2	4%	92%
	coarse gravel	32	0	0%	92%
	very coarse gravel	45	4	8%	100%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
CODDIE	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Doulde	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
	TOTAL % of	whole count	50	100%	

Sum	mary Data
D50	1.70 mm
D84	15.0 mm
D95	39.0 mm

Table 10a. Baseline Stream Data Summary Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet Design Parameter Regional Curve **Pre-Existing Condition** Reference Reach(es) Data Monitoring Baseline Gauge² LL UL Eq. Min Med Max SD^5 Min Med Max SD^5 Min SD^5 Mean Mean Med Max Min Med Max Dimension and Substrate - Riffle Only Mean Bankfull Width (ft) 25.2 25.2 22 23.5 24.9 24.9 2 Floodprone Width (ft) >300 >300 63 >131 200+ 200+ 2 1 Bankfull Mean Depth (ft 1.5 2 1.58 1.59 1 1.3 1.5 ¹Bankfull Max Depth (1 2 2.6 1 2.6 1.7 2.3 2.8 2.8 Bankfull Cross Sectional Area (ft 2 28.9 36.1 40.0 40 21.7 36.1 Width/Depth Ratio 2 15.8 1 15.8 >15 >15 >15 >15 Entrenchment Ratio >15 1 >15 2.9 7.5 8.4 >8 2 ¹Bank Height Ratio 1.0 1.0 1.0 1.0 1.0 1.0 2 Profile Riffle Length (ft) 39 64 2 51.5 51.5 Riffle Slope (ft/ft) 2 0.013 0.013 0.26 0.28 0.28 0.3 Pool Length (ft) 8.3 63.7 30.5 30.5 168 198 196 232 27.5 4 Pool Max depth (ft) 3.4 3.4 3.1 3.5 3.4 4.25 4 1 Pool Spacing (ft 239 3 56.0 116.0 94.0 116.4 158 372 719 Pattern Channel Beltwidth (ft) 31.7 44.9 62.3 31.7 44.9 62.3 40 74.5 101 24.8 78.5 4 Radius of Curvature (ft 15.0 37.8 95.0 15 37.8 95 19 60.5 58 107 31.5 4 Rc:Bankfull width (ft/f 0.6 1.5 3.8 0.6 1.5 3.8 0.9 2.7 2.6 4.8 1.4 4 Meander Wavelength (f 73.0 133.8 216.0 73 133.8 216 86 149.25 121.5 268 70.1 4 Meander Width Ration 3.1 4 2.9 5.3 8.6 1.3 1.8 2.5 3.9 6.7 5.5 12 Transport parameters 0.1425 0.07 Reach Shear Stress (competency) lb/f 2.0 2.0 Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m **Additional Reach Parameters** Rosgen Classification C5 C5 C5 Bankfull Velocity (fps 3.9 3.05 3.75 Bankfull Discharge (cfs) 150.0 Valley length (ft) 1961 Channel Thalweg length (ft) 1850 1850 1850 Sinuosity (ft) 1.06 1.06 1.06 Water Surface Slope (Channel) (ft/ft) 0.0014 0.0014 0.0013 BF slope (ft/ft) 0.0013 0.0013 ³Bankfull Floodplain Area (acres 4% of Reach with Eroding Banks Channel Stability or Habitat Met Biological or Other

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet

Parameter		Р	re-Exis	sting C	onditio	on		Re	ference	e Reacl	n(es) Data	ì		Design				As-bu	ıilt/Bas	seline	
¹ Ri% / Ru% / P% / G% / S%	1%	84%	4%	11%	0%											11%	60%	14%	15%	0%	
¹ SC% / Sa% / G% / C% / B% / Be%	7%	83%	10%	0%	0%	0%															
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.12	0.34	0.55	1.70	3.60	<2.0	<2.0														
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	0	0	0	0	1850											0	0	200	0	1650	
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	1850	0	0	0												1850	0	0	0		

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet

					Citatie	3 VVIIII	ams Stre	aiii, vve	tianu, a	iiu buii	iei Site i	00-01	to Sant	ay Gree	K. 1,030	IIIIeai	leet											
			Cross	Section 1	(Riffle)					Cross	Section 2	(Glide)					Cross	Section 3	3 (Run)					Cross	Section 4	(Riffle)		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																												
Bankfull Width (ft)	22.0	22.6	23.9					19.6	20.5	19.4					22.6	18.8	20.1					24.9	24.5	24.1				
Floodprone Width (ft)	63.0	65.4	66.1					200+	200+	200+					200+	200+	200+					200+	200+	200+				
Bankfull Mean Depth (ft)	1.0	1.0	0.9					1.7	1.6	1.8					1.6	1.5	1.7					1.5	1.5	1.5				1
Bankfull Max Depth (ft)	1.7	1.6	1.8					2.5	2.8	3.1					2.8	2.8	3					2.8	2.9	2.9				1
Bankfull Cross Sectional Area (ft²)	21.7	22.5	22.7					33.4	32.8	35.3					36.4	29.0	33.5					36.1	37.8	37.1				1
Bankfull Width/Depth Ratio	322.3	22.7	25.2					11.5	12.9	10.7					14.0	12.2	12.1					16.6	15.8	15.6				1
Bankfull Entrenchment Ratio	2.9	2.9	2.8					>10.0	>10.0	>10					>8.0	>8.0	>8.0					>8.0	>8.0	>8.0				1
Bankfull Bank Height Ratio	1.0	1.0	1.0					1.1	1.1	1.0					1.0	1.0	1.0					1.0	1.0	1.0				1
Based on current/developing bankfull feature ²																												
Record elevation (datum) used																												Ì
Bankfull Width (ft)																												I
Floodprone Width (ft)						L																						I
Bankfull Mean Depth (ft)			These c	ells may population ear. See	or may	not																						ı
Bankfull Max Depth (ft)			given y	ear. See	footnote	2 [1
Bankfull Cross Sectional Area (ft²)			below																									1
Bankfull Width/Depth Ratio																												ı
Bankfull Entrenchment Ratio		L																										<u>ı</u>
Bankfull Bank Height Ratio																												
Cross Sectional Area between end pins (ft²)																												
d50 (mm)																												

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

then these two sets of dimensional parameters will be equal, however, if another depositional feature of significance develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells.

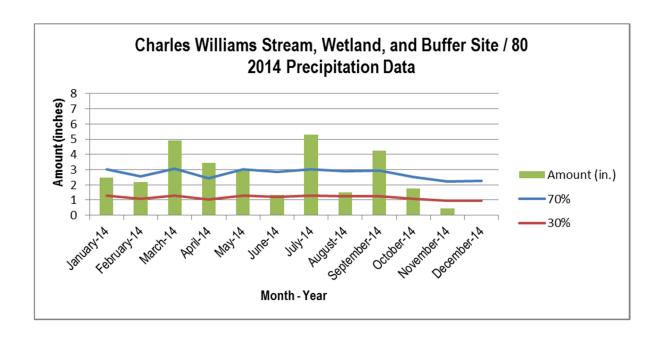
^{2 =} Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline datum remains the only significant depositional feature

Table 11b. M	onitoring Data - Stream Reach Data	Summary
Charles Williams Stream,	Wetland, and Buffer Site / 80 - UT to Sandy C	reek: 1,748 linear feet
MY-1	MY-2	MY-

arameter	Baseline						MY-1						MY-2						MY-3						MY- 4					MY- 5				
		T	I	Ι	0.54						0.54						0.04			.,		4						0.54						0.74
imension and Substrate - Riffle only	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max SD ⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD⁴
Bankfull Width (ft)	22	23.5	24.9	24.9		2	22.6	23.5	24.5	24.5		2	23.9	24.0	24.0	24.1		2																
Floodprone Width (ft)	63	>131	200+	200+		2	65.4	>132.7		200+		2	66.1	>133	200+	200+		2																
Bankfull Mean Depth (ft)	1	1.3	1.5	1.5	<u> </u>	2	1.0	1.3	1.5	1.5		2	0.9	1.2	1.2	1.5		2								-								
¹ Bankfull Max Depth (ft)	1.7	2.3	2.8	2.8		2	1.6	2.5	2.9	2.9		2	1.8	2.35	2.35	2.9		2																
Bankfull Cross Sectional Area (ft²)	21.7	28.9	36.1	36.1	<u> </u>	2	22.5	30.5	37.8	37.8		2	22.7	29.9	29.9	37.1		2																
Width/Depth Ratio	>15	>15	>15	>15	<u> </u>	2	>15	>15	>15	>15		2	>15	>15	>15	>15		2																
Entrenchment Ratio	2.9	7.5	8.4	>8		2	2.9	>5.4	>8	>8		2	2.8	>5.4	>8	>8		2																
¹ Bank Height Ratio	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0		2																
rofile																																		
Riffle Length (ft)	39.0	51.5	51.5	64.0		2	53.13	75.34	78.7	91	14.5	6	88.9	127.7	123.7	160.1	26.9	5																
Riffle Slope (ft/ft)	0.003	0.003	0.003	0.003		2	0.003	0.003	0.003	0.003	0.0	6	0.004	0.008	0.007	0.016	0.004	5																
Pool Length (ft)	168.0	198.0	196.0	232.0	27.5	4	283.6	283.6	283.6	283.6		2	115.8	127.7	127.7	139.6		2																
Pool Max depth (ft)	3.1	3.5	3.4	4.3		4	0.8	1.5	1.5	2.3		2	2.0	2.0	2.0	2.0		2																
Pool Spacing (ft)	158.0	372.0	239.0	719.0		3	283.6	283.6	283.6	283.6		1	975.2	975.2	975.2	975.2		1																
attern																																		
Channel Beltwidth (ft)	40.0	74.5	78.5	101.0	24.8	4																												
Radius of Curvature (ft)	19.0	60.5	58.0	107.0	31.5	4										Dotte	orn data	will not	typicall	v bo ool	lootod i	unless visual	data dir	aonaion	al data	or profile	data							
Rc:Bankfull width (ft/ft)	0.9	2.7	2.6	4.8	1.4	4										Palle	an data	WIII TIOL	typicali i	ndicate	signific	ant shifts fron	uata, dir 1 baselii	nensioni ne	ai uata (or prome	uala							
M eander Wavelength (ft)	86.0	149.3	121.5	268.0	70.1	4																	_		_									
Meander Width Ratio	3.9	6.7	5.5	12.0	3.1	4																												
Iditional Reach Parameters																																		
Rosgen Classification			(C5					С	5					С	5																		
Channel Thalweg length (ft)			1	748					17-	48					17	48																		
Sinuosity (ft)			1	.06					1.0	06					1.0	06																		
Water Surface Slope (Channel) (fl/ft)			0.0	0013					0.00	013					0.0	018																		
BF slope (ft/ft)			0.0	0013					0.00	013					0.0	010																		
³ Ri% / Ru% / P% / G% / S%	5%	80%	15%				5%	80%	15%				5%	80%	15%																			
³ SC% / Sa% / G% / C% / B% / Be%																																		
³ d16 / d35 / d50 / d84 / d95 /																																		
² % of Reach with Eroding Banks				0					()					()																		
Channel Stability or Habitat Metric																																		
Biological or Other																																		

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

^{2 =} Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table


^{3 =} Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

^{4. =} Of value/needed only if the n exceeds 3

APPENDIX E

Hydrology Data

Table 12. Verification of Bankfull Events									
Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet									
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)						
11/6/2013	unknown	Crest Gauge	Not Available						
3/6/2014	unknown	Visual On-site (wrack)	Not Available						
9/16/2014	unknown	Crest Gauge	Not Available						

APPENDIX F

Response to EEP Comments – Draft MY2 Report

1151 SE Cary Parkway, Suite 101 Cary, North Carolina 27518 (919) 557-0929 www.ecologicaleng.com

December 17, 2014

Ms. Kristie Corson EEP Project Manager 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Subject: Response to Comments - DRAFT Annual Monitoring Report – Monitoring Year 2 (2014)

Sandy Creek (Charles Williams) Site Monitoring

Cape Fear River Basin – CU# 03030002 Randolph County, North Carolina Contract No. 004682 – Task 5

EEP Project # 80

Dear Ms. Corson:

Thank you for your comment letter dated December 15, 2014 based on your review of the draft Monitoring Year 02 Report for Sandy Creek - Charles Williams Stream, Wetland and Buffer Site (EEP Project #80). Per our recent phone conversation, please find the comments addressed individually below, and do not hesitate to contact me with any additional questions. A revised monitoring report is in preparation.

We appreciate your assistance with this project to date.

ECOLOGICAL ENGINEERING, LLP

Davidlo-Cooper

David Cooper, Project Scientist

- <u>Comment</u>: Table 9 The MYI data reports 0 planted stems and 0 total stems for Veg Plot #2. NCEEP staff visited the site on December 11, 2014, and counted 4 stems in Veg Plot #2. MYO report data included 5 total stems. The MYI data reports 2 planted stems for Veg Plot# 8. NCEEP staff counted 5 flagged stems (3 stems live stems, 1 dead stem, 1 re-sprout).
- Response: Table 9 only shows live, planted stems and does not account for flagged, planted stems which were either not located or which were located but found to be apparently dead. Data collection for MY1 (per CVS notation) was performed on September 16, 2014.

With regard to Veg. Plot #2 – during data collection, 4 planted stems were located. All located stems were considered dead. A fifth planted stem was not located and was labeled as missing. Table 9 shows 0 live, planted stems.

With regard to Veg. Plot #8 – during data collection, 6 planted stems were located. 4 of these stems were labeled as dead, 1 was a normal live stem, and 1 was a re-sprout. Two additional stems were not located and were labeled as missing. Table 9 shows 2 live, planted stems.

It is possible that some of the stems which were considered dead at the time of data collection may resprout in the coming season. If this is observed our data will be amended to show re-sprouts as needed.

- Comment: Please confirm if the data collected for MYI was accurately entered into CVS.
- Response: We have confirmed, by reviewing the hard copies of the field data sheets and comparing to the data entered into the CVS database, that the data were accurately entered. As noted above, report Table 9 only captures live, planted stems and does not account for dead or missing stems which were entered into the database.
- Comment: Please describe the reason for the reduced stem count between MYO and MY1.
- Response: We suspect there may be multiple reasons for the reduced stem count between MY0 and MY1 (per CVS notation). The primary cause appears to be the vigorous, dense, tall herbaceous growth across many areas of the site. Herbaceous cover was observed to overwhelm and weight down small, planted bare-root stems, and made accurate data collection (finding the planted stems) very difficult. The reduced stem count is likely attributable to the heavy herbaceous cover, which lowers vigor of planted stems and makes location of stems more difficult.

As previously noted, data collection for MY1 (per CVS notation) was performed on September 16, 2014. To improve likelihood of finding planted stems, data collection in subsequent monitoring years will be performed earlier in the growing season, prior to full annual growth of herbaceous cover.

- <u>Comment</u>: The Profile Reach data between Station 2300 and 2700 appears incorrect. Please confirm.
- Response: A comparison of As-built, MY1, and MY2 longitudinal profile charts does indeed show what appears to be incorrect data. Specifically, As-built data show a pool at station 2447, MY1 data show no pool in this area, and MY2 data show a pool at station 2575.

To determine the cause of this data representation, the raw point files were opened in Microstation and viewed in plan view. Longitudinal profile data shots were observed to be spaced widely apart and inconsistent in location between subsequent monitoring years. Due to the lack of detailed data collection, it is currently not possible to determine the actual longitudinal profile of the stream. There may be a single pool migrating downstream, or it is also possible that different pools were captured between As-built and MY2 data collection and the pools were completely missed during MY1. Because data points were not taken in the same spots, we cannot currently assess which of these possibilities is correct.

To improve the accuracy of subsequent longitudinal profile charts, greater detail will be collected in the field. An effort will be made to capture grade breaks (including individual pools and riffles) at more closely spaced intervals than have been captured in the past.

- Comment: Please add the station numbers to the Plan Views.
- Response: We have added the station numbers to the Plan Views.
- <u>Comment</u>: Figure 3b Veg Plot #12 total stems/acre should read 536 526.
- Response: We have corrected this typographic error on Figure 3b.
- Comment: Please revise as necessary and provide 3 hardcopies and 1 pdf copy.
- Response: We will provide the requested revised MY2 report.